Molecular Complexes of Triphenylphosphine Oxide and Triphenylarsine Oxide with Antimony(III) and Bismuth(III) Halides. Vibrational Spectra and Structures

S. MILICEV^{*} and D. HADZI

Department of Chemistry, University of Ljubljana, Ljubljana, Yugoslavia (Received July 2, 1976)

Nine new complexes are prepared (SbBr,. $2(C_6H_5)/2PO$, $SbI_3 \cdot 2(C_6H_5)/2PO$, $BiCl_3 \cdot 3(C_6H_5)/2PO$ $SbBr_3.2(C_6H_5)_3AsO,$ [SbBr₂.4(C₆H₅)₃AsO] Br, *[SbIz~3(C,H,)&O] I, BiCl,*2(Cd_I,)&O, BiBr3-* $3(C_6H_5)_3AsO$ and $2BiI_3 \cdot 3(C_6H_5)_3AsO$ and their *molecular structure and the structure of the com* $plexes SbCl₃·2(C₆H₅)₃PO, BiBr₃·2(C₆H₅)₃PO, BiI₃·$ $2(C_6H_5)/2PO$ and $SbCl_3·2(C_6H_5)/2AO$ discussed on *the basis of vibrational spectra. It is shown that the mean shifts of u(P0) and v(As0) are proportional to the Lewis acidity and basicity of the components,* taking into account the configuration and the number *of ligands. The structure of the bridging halogen bonds is discussed and caution is suggested in deducing the stereochemical inactivity of the electron* lone pair of antimony(III) and bismuth(III) in poly*nuclear complexes from crystal structure data only. The degenerate deformation vibrations of the P-O and As-O bonds in the far infrared spectra of the free oxo-bases are located and the 1050-1150 cm-' region in triphenylphosphine oxide is reassigned.*

Introduction

The Gillespie-Nyholm treatment [l] of the stereochemistry of the trivalent elements of the V the main group of the periodic table justifies the investigations of any complex of these elements with neutral electron donors such as triphenylphosphine oxide and triphenylarsine oxide. Moreover, these complexes were so far neglected. The syntheses of only five antimony and bismuth complexes with inadequate infrared data have been reported [2, 31, and the structure of one of them $(SbCl₃ \cdot 2(C₆H₅)₃$ AsO), without any pertinent crystallographic data, was referred to [4].

We prepared four of the known complexes, three of them by new procedures, synthesized nine new ones and tried to discuss their stereochemistries on the basis of vibrational spectra [S] .

Experimental

The preparative work was done in dry nitrogen in Schlenk tubes. The inorganic substances were *p.a..* The oxo-bases were recrystallized several times from benzene and dried before use by azeotropic distillation with benzene. The solvents were dried over molecular sieves or by other standard methods. There was no water present in the complexes according to infrared spectra.

Physical Measurements

Molar conductivities were measured on a Konduktometer Type E 182 Metrohm Ag., Herisau, Switzerland. Infrared spectra were recorded on Perkin-Elmer 521 and Beckman IR-11 spectrophotometers. An argon laser Spectra-Physics 52, 2W and a helium-neon laser Spectra-Physics 125, 70 mW were used for exciting the Raman spectra. X-ray powder data were obtained on a Guinier-de Wolff camera (Enraf-Nonius) with CuK $\bar{\alpha}$ radiation.

Analysis

Bismuth was determined gravimetrically as phosphate. Halogens were potentiometrically determined with silver nitrate. Arsenic was determined as in ref. 6.

Preparation of the Complexes

The complexes were prepared by mixing the solutions of the halide and the oxo-base in appropriate proportions (Table I). On cooling or evaporating the solvent, the complex crystallized. SbI_3 $2(C_6H_5)_3PO$ is the only triphenylphosphine oxide complex that was difficult to prepare. All other triphenylphosphine oxide complexes are stable with sharp melting points. Powder diffraction data show the complexes $SbCl₃$ ^{*} $2(C_6H_5)_3PO$ and $BiBr_3.2(C_6H_5)_3PO$ respectively to be isomorphous with $SbBr_3:2(C_6H_5)_3PO$ and BiI_3 -2(C_6H_5)₃PO (Table II). Triphenylarsine oxide complexes as a class were more difficult to prepare. Purification was not successful with $SbBr_3.2(C_6H_5)_{3}$ -AsO, $BiCl_3 \cdot 2(C_6H_5)_3$ AsO and $BiBr_3 \cdot 3(C_6H_5)_3$ AsO. Molar conductivities are slightly higher than with triphenylphosphine oxide series, but only two of them are $1:1$ electrolytes $[7]$. Because of the absence

^{*}Author to whom correspondence should be addressed.

TABLE I. Analytical and Physical Data.

Complex	Reaction	Molar	Colour	M.p., °C	$\Lambda_{\mathbf{M}}^{\mathbf{b}}$	Analysis							
	Solvent ^a	Ratio				Calcd				Found			
						M	Hal	$\mathbf C$	H	M	Hal	C	Н
$SbCl_3 \cdot 2P^c$	b	1:1	White	$159 - 161$	1.9		13.58	55.09	3.83		13.6	55.1	4.2
SbBr ₃ 2P	b	1:4 1:2	Cream	$168 - 169$	4.2		26.17	47.11	3.27		26.2	47.0	3.3
$SbI_3.2P$	bg	1:4	Red	$52 - 54$ ^d				40.81	2.83			36.8	3.1
$BiCl3 \cdot 3Pe$	a	1:2	White	$217 - 219$	1.8	18.19	9.27	56.35	3.91	19.2	8.3	55.4	4.2
$BiBr_3 \cdot 2Pf$	ե€	1:3	Cream	$180 - 182$	3.3	20.82	23.88	43.03	3.00	21.2	22.6	43.1	3.1
$Bil_3 \cdot 2Pf$	$m^{\mathbf{g}}$	1:2	Orange	198-199	5.1	18.24	33.25	37.69	2.62	18.7	33.1	37.9	2.8
$SbCl_3 \cdot 2A^{h,i}$			White	$200 - 204$	11.8		12.21	49.55	3.44		12.5	48.8	3.8
SbBr ₃ 2A	b	1:2	Cream	$106 - 118$	11.9		23.88	42.96	2.98		22.3	46.1	3.5
$[SbBr2 \cdot 4A]Br$	b	1:10	White	194-200	36.2		14.55	52.40	3.54		14.5	52.9	4.2
$[SbI2 \cdot 3A]I$	_Ե g	1:10	Brown	$164 - 166$	36.2		25.95	44.13	3.06		25.9	42.5	3.4
$BiCl3 \cdot 2A$	X	1:2	White	103 ^d	12.5	21.79	11.10	45.03	3.13	23.0	12.1	43.8	4.9
BiBr ₃ 3A	b	1:3	White	$199 - 211$	7.8	14.77	16.96	45.80	3.18	14.0	15.1	45.9	3.4
		1:10											
$2Bil3 \cdot 3Aj$	m^g	1:2	Red	$247 - 249$	6.6 ^k	19.49	35.49	30.21	2.10	20.2	36.4	25.5	2.0
		1:10											

 a b = benzene; a = acetone; m = methanol; x = mixture of benzene, methanol and CH₂Cl₂. b 10⁻³ *M* in C₆H₅NO₂ at 22 °C. ^c P: (C_6H_5) ₃PO. ^d Decomposition. ^e BiCl₃-2P could not be obtained³. ^f Previously prepared from acetone³. ^g Hot Soxhlet extraction of the halide into the solution of oxo-base. $h(A: (C_6H_5)_3 ASO.$ ¹ Prepared by the method of Phillips and Tyree, Jr.². $k_{4.10}$ ⁻⁴ *M* in C₆H₅NO₂ at 22 °C. ^j Calcd: As. 10.47. Found: As. 10.6.

TABLE II. Powder Diffraction Data (d values and relative intensities in parentheses; CuK $\overline{\alpha}$ radiation, λ = 1.5418 Å).

 $SbCl₃ \cdot 2(C₆H₅)₃PO$ 10.0(40), 9.3(40), 8.4(80), 8.1(20), 7.0(60), 5.3(40), 5.02(40), 4.62(100), 4.45(40), 4.21(20), 4.10(30), 3.18(20). $SbBr_3.2(C_6H_5)_3PO$ 10.1(40), 9.4(50), 8.5(80), 8.2(30), 7.0(60), 5.3(40), 5.03(30), 4.64(100), 4.45(30), 4.22(20), 4.12(20), 3.19(10). $BiBr 2(C_6H_5)$ ₃PO 12.5(80), 10.7(100), 8.6(80), 7.7(5), 7.2(5), 6.6(5), 6.2(5), 5.7(5), 5.3(5), 4.30(50), 3.80(40), 3.35(5). $BiI_3 \cdot 2(C_6H_5)_3PO$ $12.6(80)$, $10.9(100)$, $8.8(80)$, $7.9(5)$, $7.3(5)$, $6.7(5)$, $6.3(5)$, $5.8(5)$, $5.4(5)$, $4.35(40)$, $3.82(40)$, $3.40(5)$.

of ν (AsO) bands of free triphenylarsine oxide they are formulated as $[SbBr_2 \cdot 4(C_6H_5)_3AsO]Br$ and $[SbI₂ \cdot 3(C₆H₅)₃ AsO] I.$

Vibrational Spectra

Triphenylphosphine oxide and triphenylarsine oxide coordinate through the oxygen atom and the significant changes in their spectra are in the P-O and As-O stretching regions $[2, 8-10]$. The depletion of the electron densities in the P-O and As-O bonds on coordination is opposed by the kinematic coupling of the $P-O$ or As-O oscillators with the oxygen-metal vibration. Approximate calculations by Cotton et al. [10] show the ν (PO) to shift by 50

cm⁻¹ to lower frequencies relative to $v(AsO)$ in equivalent complexes with the linear coordinative bond of the same strength. With the bent coordinative bond, the $P-O$ or As- O frequency will be angle dependent both by kinematic effects [11] and through the differences in hybridization [12]. Analogous complexes of the same ligand should display shifts proportional to the strength of the complex bond. If there are more ligands in the complex a splitting of the bands should occur due to coupling [2] and/or inequivalence of the bonds $[1]$. Since the complexes are of limited solubility in inert solvents, it is not possible to take into account solid state effects.

The changes in the organic ligand spectra below 500 cm⁻¹ because of different intramolecular

	TABLE III. Infrared and Raman Spectra in the Stretching Region of P-O and As-O Bonds (in cm ⁻¹). ^a														
(C_6H_5) ₃ PO		$StC13 \cdot 2P^{b}$		$SbBr3 \cdot 2P$			$SbI_3 \cdot 2P^c$	$BICI_3.3P$		$BiBr3 \cdot 2P$		$Bil_3 \cdot 2P$			
Ľ.	œ	E.	R	\tilde{a}	R		Ξ	LR.	∝	ΙR.	نم	Ξ.	نم		
1188 _{vs}	1185m	1129 _{vs} 1136s	1135s	1128vs 1137 _s		1134 _s	1121 _{vs}	1152s 1169s	$154w-m$ 1167m	1151 _{vs} 1144vs	152m 1140w	1142s 1149 _s	1139m 1152s		$\nu(\overline{P}O)$
1179sh	1179sh	1184w	1188w	1184w		1188w	1185w	1181sh	1177w	1183w	1188vw	1182vw	1184w		aß(CH)
1163m	1165w 1156w	1159w	1165w 1158w	1159w		1157w 1165w	1161w	1162sh		1162sh	1162sh	1160sh	1160m		с ⁹ (СН)
1120s	1119w	1118s	1115sh	1117 _s		1114sh		1120s	1117w	1119sh 1124m	1121m 1119vw	1113sh	1119w		q (X-sens)
1093w	1092w-m	1066s	$1065w-m$	1064s		$1062w-m$	1045s	1089m	1088w	1085sh 1088s	$1085 w-m$	1083sh 1086s	1084w-m		q' (X-sens)
1070m	1072vw	1075m 1079m	1075sh	1076m		1074w	1068sh	1070m	1068vw	1073w	1074vw	1071m	1071w		dβ(CH)
(C_6H_5) ₃ A ₅ O		$StCl_3 \cdot 2A^d$		2A $SbBr3$.		$[SubBr2 A]$ Br		$SbI_2.3A]Ic$	BIC13.2A		$BiBr3$.3A		$2Bil3 \cdot 3A$		
Š	نم	œ Ë	I.R.	نم		ΙR.	نم	ΓŔ.	ΓŔ.	R.	ΙR.	œ	ĽŘ.	نم	
880 _{vs}	876vs	824vs 808vs	806m 820s	828vs 869s	865w 882w 824w	880vw 820vs 849w	818vw 879vs 844m	813vs	840vs	859w	848vs 823vs 864m	846m 823w 864s	846vs 835vs 857vs 824vs 818vs	837m 857m 816m 852s 847s 825s	$\nu(\mathbf{AsO})$
854w 841w		846m 840m	850vw 838vw	862sh 857sh				853vw 863vw			837sh				$g\gamma$ (CH)
					، ء		ć								

 $A: (C_6H_5)$ ₃A_sO. Raman spectra could not be obtained. $P: (C_6H_5)$ ₃PO. a Key: s, strong; m, medium; w, weak; v, very; sh, shoulder.

Sb(III) and Bi(III) Complexes of Ph₃PO and Ph₃AsO

coupling upon complexation make the spectra obscure and the selection of halide vibrations uncertain. The pronounced tendency to bridging structures in antimony(III) and bismuth(III) complexes [13] and the different amount of coupling between chain units result in different spectra in solid and solution in some cases and similar in others [14]. Hence, the obvious assignments of the strong absorptions only in the metal-halogen stretching regions were made and the stereochemical arguments based on the behaviour of ν (PO) and ν (AsO).

Spectra of Complexed Oxo-bases

The P-O and As-O stretching regions are represented in Table III. Our assignment follows that of Deacon and Green $[15, 16]$ with the exception of the bands at 1120 and 1093 cm⁻¹ in triphenylphosphine oxide. The 1093 cm^{-1} band is certainly not an overtone. It is a fundamental because of its intensity in Raman and in the complex infrared spectra [15] (Figure 1). We assign it as the symmetric component

FREQUENCY (cm⁻¹)

Figure 1. Representative infrared and Raman spectra of the *cis* 1:2 complexes of triphenylphosphine oxide in the stretching region of the P-O bond. A, $(C_6H_5)_3PO; B, BiBr_3$. $2(C_6H_5)_3PO;C, SbCl_3.2(C_6H_5)_3PO.$

 (q', a) and the 1120 cm⁻¹ band as the degenerate one (q, e) of the $q(X-sens)$ band of the monosubstituted phenyl ring (nomenclature by Whiffen [171) split by the coupling over the phosphorus atom in the C_3 symmetry of the triphenylphosphine oxide. Such splittings were established in other predominantly X-sensitive stretching vibrations also $[18-20]$. The ν (PO) in triphenylphosphine oxide is not as localized [21] as is the ν (AsO) in triphenylarsine oxide [22],

and some coupling with the q' (same symmetry representation in C_3) has to be anticipated. The molecules are tetrahedral and it may be expected that the inductive effect will primarily influence the molecular bonds (discussion and references 18, 23). Hence, it is not surprising to find the q' band perturbed to a higher degree in the more strongly bonded antimony complexes compared to the bismuth ones.

Certain de-coupling of X-sensitive phenyl modes and the skeletal modes of the oxides below 500 cm^{-1} has to occur in proportion to the strength of oxygen coordination. Redistribution of intensities in the vicinity of t vibration in triphenylarsine oxide and three clearly defined bands in the triphenylphosphine oxide complexes in the region of t' vibration indicate participation of the degenerate δ (AsO) and δ (PO) modes, respectively (Figure 2, Table IV) [16, 24].

Figure 2. Perturbations in organic ligand far infrared spectra. A, $(C_6H_5)_3PO$; B, Bil₃-2(C_6H_5)₃PO; C, $(C_6H_5)_3AsO$; D, $2Bil_3 \tcdot 3(C_6H_5)$ ₃AsO.

The metal-oxygen stretching modes which should be strongly coupled with the δ (AsO) or δ (PO) modes appear around 400 cm^{-1} but are difficult to locate because of their low intensity $[25, 26]$. Therefore we assign this region according to Clark et al. [27]. No comments yet can be made about $\delta(PPh_3)$ and $\delta(AsPh_3)$ modes, except that they should be placed below 300 cm^{-1} in both oxo-bases.

^a Key: s, strong; m, medium; w, weak; v, very; sh, shoulder. e Hal: Cl, Br.

 $^{\rm b}$ P: $(C_6H_5)_3$ PO. d M: Sb, Bi. ^c A: (C_6H_5) ₃AsO

* Combination or an overtone band [15].

Stereochemistry

The analyses, the molar conductivities of solutions in nitrobenzene and the absence of $\nu(PO)$ or ν (AsO) bands of free oxo-bases determined the formula and the coordination numbers. Mononuclear complexes, if not otherwise indicated, were presumed. Minor coupling was surmised between metal-halogen, metal-organic ligand and organic ligand vibrations because of different masses and different force constants involved [9, 10, 28].

In the molecules with two organic ligands a square pyramidal configuration, common with the 5-coordinated antimony(III) [29, 30], could be anticipated by the Gillespie-Nyholm rules [1]. Small

splittings of the $\nu(PO)$ or $\nu(AsO)$ (7–16 cm⁻¹) imply equally strongly bonded ligands which excludes the apical position [1, 31] (Table III). One infrared band in SbI_3 $2(C_6H_5)_3PO$ and $BiCl_3$ $2(C_6H_5)_3AsO$ suggests a *trans* configuration with the center of symmetry in the organic ligand-metal-organic ligand segment and two bands in both infrared and Raman for $SbCl_3$ $2(C_6H_5)_3PO$, $SbBr_3$ $2(C_6H_5)_3PO$, BiI_3 $2(C_6H_5)_3PO$ and $SbCl_3 \tcdot 2(C_6H_5)_3AsO$ indicate cis configuration. This is in conformity with the determined crystal structures $(SbCl₃ \cdot 2(C₆H₅)₃ AsO [4];$ $SbCl_3 \tcdot 2(C_6H_5)$ PO [32]; $BiI_3 \tcdot 2(C_6H_5)$ PO is a binuclear complex with two bridging halogens [33]). The splitting of the highest Sb-Cl band in the Raman spectrum of $SbCl_3 \tcdot 2(C_6H_5)$, AsO (Table IV) may be

caused by solid state effects, but a more complete crystal structure determination is needed for the elucidation of the problem. The width of the bands of $BiCl₃·2(C₆H₅)₃AsO$ (for instance the infrared bands at 840, 360 and 252 cm⁻¹ have half-widths of 61, 30 and ca . 50 cm⁻¹ respectively) suggest a polymer structure [34]. Three ν (AsO) bands in Raman are observed in $SbBr₃·2(C₆H₅)₃AsO$. The purification was not successful and the complex may be a mixture of *cis* and trans isomers. There are either infrared or Raman active ν (AsO) and ν (SbBr) bands in the complex of $[SbBr_2*4(C_6H_5)_3AsO]$ Br (Figure 3). D_{4h} symmetry with equatorially bonded organic

Figure 3. Infrared $(- \)$ and Raman $(- - -)$ spectra in the stretching regions of the As-O and Sb-Br bonds of $[SubBr_2$. $4(C_6H_5)$ ₃AsO] Br.

ligands is proposed. No Raman spectrum of $[SbI_2]$. $3(C_6H_5)_3AsO$ I could be obtained and we refrain from making a structure proposal. Six-coordinate complexes such as $BiCl₃·3(C₆H₅)₃PO$ and $BiBr₃·$ $3(C_6H_5)_3$ AsO may have ligands in *cis* (C_{3v}) or in *trans* position (C_{2v}) . There are two stretching P-O bands in triphenylphosphine oxide complex and three As-O bands in triphenylarsine oxide one, all infrared and Raman active. A similar pattern can be discerned in the metal-halogen stretching region. Hence C_{3v} symmetry is ascribed to BiCl₃. $3(C_6H_5)_3PO$ (a₁ and e bands) and C_{2v} to BiBr₃. $3(C_6H_5)_3$ AsO (2a₁ and b₂ bands). It is difficult to find an explanation for 5 infrared and 6 Raman bands in $2BiI_3 \cdot 3(C_6H_5)_3$ AsO. Lazarini *et al.* [35] found a bimolecular complex with all of the triphenylarsine oxides linked to one of the bismuth atoms. There are 4 molecules in the unit cell of the PT symmetry with two molecules in an asymmetric set. There is no atom on Wyckoffs special positions and the interaction within the unit cell seems to be a correlation field effect with the sixth infrared band unresolved.

Conclusion

An indication of the complex bond strength can be obtained from the average negative shifts of the ν (PO) and ν (AsO) bands despite the presented variety of structures. In Figure 4 allowance is made for

Figure 4. Mean shifts in the $P-O$ and $As-O$ stretching frequencies in triphenylphosphine oxide and triphenylarsine oxide upon complexation. Different kinematic couplings were assumed [10]. Inorganic Lewis acids are arranged by the metal electronegativities in their halides. \circ , triphenylphosphine oxide complexes; \Box , triphenylarsine oxide complexes.

different kinematic couplings according to Cotton [10]. Inorganic Lewis acids are arranged by the metal electronegativities in halides, Pauling scale, calculated by the method of Huheey [36] (electron affinities and ionization potentials of antimony and bismuth were used [37]). The *trans* influence and the larger number of organic ligands should cause the weaker coordinative bonds. The three complexes with organic ligands in *trans* position in the arsine oxide series and the only one in the phosphine oxide series with three organic ligands on the central atom show significant negative deviations. Antimony(II1) iodide complexes are omitted because of the absence of Raman spectra. It is obvious that the triphenylarsine oxide is a stronger Lewis base than triphenylphosphine oxide, as was also established in the case of hydrogen bonded complexes [38] . Antimony(II1) halides are stronger Lewis acids than the bismuth(III) ones.

A four-electron three-center bond has been proposed in the mononuclear halogen complexes of antimony(II1) [39] . In the polynuclear systems the halogen should be acting as a bridge by donating its free p electron pair to the vacant 6d orbital of antimony with the consequent stereochemical inactivity of the antimony lone pair $[40, 41]$. The suggested bridge electron distribution is too crude as the easily polarisable electrons in the outer orbitals of antimony and bismuth have to take part in synergic bonding effects. The nuclear quadrupole data on bromine bridged $Sb_2Br_9^{-3}$ adduct suggest the bulging of the antimony electron kernel toward bridging bromine to a certain extent [42]. Hence it is uncautious to claim the stereochemical inactivity of the lone pair in antimony(III) and bismuth(III) binuclear or polynuclear octahedral complexes until more experimental data on electron density distribution are gathered. We can state stereochemical inactivity of the lone pair in two bismuth complexes and just one cationic antimony complex $(BiCl_3 \cdot 3(C_6H_5)_3PO,$ $BiBr_3.3(C_6H_5)_3AsO$ and $[SbBr_2.4(C_6H_5)_3AsO]Br)$ and stereochemical activity in all other studied antimony complexes, but we restrain ourselves from making any statement yet on the bismuth complexes with less than six ligands on the central atom which complete the coordination number to six by halogen bridges $(BiBr_3.2(C_6H_5)_3PO, BiI_3.2(C_6H_5)_3PO,$ $2BiI_3 \cdot 3(C_6H_5)_3$ AsO and probably $BiCl_3 \cdot 2(C_6H_5)_3$ -AsO).

Adtnowledgments

We wish to thank Dr. A. Novak of the Laboratoire de Chimie Physique du CNRS, Thais, for measurements of the Raman spectra of the red complexes. The financial assistance of the Boris Kidric Fund is gratefully acknowledged.

References

- 1 R. J. Gillespie,J. *Chem. Educ., 47, 18 (1970).*
- *2* D. J. Phillips and S. Y. Tyree, Jr., J. *Am Chem. Sot.,* 83, 1806 (1961).
- 3 M. J. Frazer, W. Gerrard and R. Twaits, J. Inorg. Nucl. Chem., 25, 637 (1963).
- 4 I. Lindqvist, "Inorganic Adduct Molecules of Oxo-Compounds", Springer Verlag, Berlin, 1963, pp. 70-71. $\frac{1}{2}$ Pounds, Spinger verlag, Bernit, $\frac{1}{2}$, \frac
- . Million and D. Hauzi, $m\sigma$ $(15/1),$ picinimaly reports.
 $(0, 0, 0)$ $(0, 0, 0)$ $(0, 0, 0)$ $(0, 0, 0)$
- \mathbb{C} Chemical Analysis in Press, \mathbb{C} Chemical Press, \mathbb{C} Chemical Press, \mathbb{C} Chemical Press, \mathbb{C} 1962, p. 155.
060. p. 155.
- 7 W. J. Geary, *Coord.* Chem. *Rev.,* 7, 81 (1971).
- 8 J. C. Sheldon and S. Y. Tyrec, J. *Am. Chem. Sot., 80, 4775 (1958).*
- 9 F. A. Cotton, R. D. Barnes and E. Bannister, J. Chem. Soc., 2199 (1960).
- 10 G. A. Rodley, D. M. L. Goodgame and F. A. Cotton, 11 N. B. Colthup, L. H. Daly and S. E. Wiberley, "Intro-*J. Chem. Soc.*, 1499 (1965).
- 12 J. A. Bertrand, *Znorg. Chem., 6,495 (1967).* duction to Infrared and Raman Spectroscopy", Academic Press, New York and London, 1964, pp. 182-186.
- $\frac{1}{2}$ **J.** A. Definate, m_{ξ} , chemi, 0, 799 (1907).
2 **A.** F. W. H. Structural Incores Chemistry", Cheese as
- 14 M. A. Hoop& and. D. W. James, *Aust. J.* Chem., 26, P_{max} Press. Oxford, Press. P_{max} , P_{max} , P_{max}
- 15 G. B. Deacon and J. H. S. Green, *Spectrochim. Acta,* 1401 (1973).
- *Part A, 24, 845 (1968).*
- 16 *G.* B. Deacon and J. H. S. Green. *Snectrochim. Acta.* . $\frac{1}{2}$ and $\frac{2}{3}$, $\frac{3}{3}$, $\frac{1}{2}$ *Part A, 25, 355 (1969).*
- 18 S. MiliCev, *Spectrochim. Acta, Part A, 30, 255 (1974).*
- 19 A. L. Smith, *Spectrochim. Acta, Part A, 23, 1075 (1967).*
- \sim A. L. Smith, *Spectrochim. Acta, Part A, 24, 695 (1968).*
- ž. M. Halmann and S. Pinchas, *J. Chem. Sot.,* 3264 (1958).
- 22 J. Bernstein, M. Halmann, S. Pinchas, and D. Samuel,
- 23 L. J. Bellamy, "Advances in Infrared Group Frequencies", *J. Chem. Soc.*, 821 (1964).
- 24 W. Saffioti and N. LeCalve, *Spectrochim. Acta, Part A,* Methuen, London, 1968, p. 207.
- 25 R. P. Oertel, *Spectrochim. Acta, Part A, 26, 659 (1970). 28,143s (1972).*
- 26 R. E. Beaumont, R. G. Gael and H. S. Prasad, *Inorg.*
- 27 J. P. Clark, V. M. Langford and C. J. Wilkins, *J. Chem.* Chem., 12, 944 (1973).
- 28 T. R. Manley and D. Williams, *Spectrochim. Acta, 21, Sot. A,* 792 (1967).
- 29 M. Webster and S. Keats. *J. Chem. Sot. A. 298 (1971).* 1773 (1965):
- 30 R. K. Wismer and R. A: Jacobson, Inor;. *Chek, Ij,*
- 1678 (1974).
- 31 1. R. Beattie, F. C. Stokes and L. E. Alexander, *J. Chem. Sot. Da[ton,* 465 (1973).
- $3.1 \, \text{GeV}$ and $8.101\,\text{GeV}$, to be published.
- 33 F. Lazarini and S. Milicek, *Acta Crystallogr., B32, 2873* 34 T. Barrowcliffe, I. R. Beattie, P. Day and K. Livingstone, *(1976).*
- 35 F. Lazarini. L. GoliE and G. Pelizzi, *Acta Crvstallogr., J. Chem. Soc., A,* 1810 (1967).
- *Sect. A, 31, S140 (1975).* J. E. Huheey, *J. Phys. Chem., 69, 3284 (1965).*
- ϵ $\frac{9}{7}$ v. 1. 11011007, J. 17675. Chem., U2, J200 (1900).
L. U. V. A. Leon. J. V. Gurrich, V. N. Kondrativ, V. A.
- 38 D. Had& C. Klofutar and S. Oblak, *J. Chem. Sot. A,* Medvedev and E. L. Frankevich, "Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elchtronu "Svyazci", Intellektronu i Olitzateli Akademii Nauk Stvo Akademii Nauk
1986, Akademii Nauk Stvo Akademii Nauk Stoch Moskva, elektronu", Izdatel'stvo Akademii Nauk SSSR, Moskva, 1962, p. 164 and p. 205.
- *905 (1968).*
- 39 *S.* K. Porter and R. A. Jacobson, *J. Chem. Sot. A, 1359 (1970).* 1359 (1970).
40 S. K. Porter and R. A. Jacobson, *J. Chem. Soc. A*, 1356
- (1970).
- 41 C. R. Hubbard and R. A. Jacobson, *Inorg. Chem., II, 2247 (1972).*
- *42* T. B. Brill, P. E. Garron and G. G. Long, *J. Inorg. Nucl.* Chem., 33, 3285 (1971).